

R&D/Laboratory Inspections

R&D/Laboratory Inspections

- aka -

Inspecting users and uses of <u>unsealed</u> radioactive materials in non-medical activities [typically found in research-type facilities such as universities, pharmaceutical companies, military facilities, or analytical laboratories; and sometimes at manufacturing/processing plants, veterinary facilities, and other places]

typical 'unsealed' activities

- Basic Research
- Technology Development
- Teaching
- Analytical services for others

Does **NOT** include

human research (Part 35 – medical use)

Inspection References

- The license; the licensee's application; and/or amendment document(s).
- 10 CFR 20, 30, 32, 33, etc or state equivalents
- NUREG-1556 guidance series
 - Vol. 7: Academic, Research & Development and Other Licenses of Limited Scope (including G.C. and X.R.F.) December 1999
 - Vol. 11:...Licenses of Broad Scope
 - **▶ Vol. 12:...Licenses for Manufacturing...**
 - others

Inspection Procedures

References

- Inspection Procedure (IP) 87125 Materials Processor/Manufacturer Programs
- Inspection Procedure (IP) 87126
 Industrial/Academic/Research Programs

Typical 'unsealed' RAM (CHIPS)

Carbon 14

Hydrogen 3

odine 125 & 131

Phosphorus 32 & 33

Sulfur 35

Less Commonly Used RAM

CI-36, Ca-45, Cr-51, or other 'low-E' β +/-

Rb-86, Sr-90 or other 'high-E' β

Sr-85, Nb-95 (microspheres) or other γ

Tc-99m, F-18, and other RAM for non-human use medical research

Uranium or thorium or other alpha emitters

Small quantities, small volumes

Uses of 'Unsealed' RAM

- Bench top "wet chemistry" using pre- labeled compounds in biochemistry, biology, chemistry, etcetera
 - tracer studies ("labeling")
 - analytical work
 - > synthesis of radio-labeled compounds
 - in vitro studies
 - > in vivo studies
 - field studies
 - Veterinary practise

Users of 'Unsealed' RAM

- License types with related inspection issues
 - academic (teaching/training)
 - manufacturing of radiochemicals
 - radiopharmacy
 - veterinary medicine
 - analysis as a service to others
 - clinical RIA laboratories
 - decontamination and decommissioning
 - cyclotron radiochemical production

Performance of Inspections

- Observe Licensed Operations
- Interview Licensee Personnel
- Make Independent Measurements
- Review Representative Records

STRIKE A GOOD BALANCE

Inspection Focus Elements (FE)

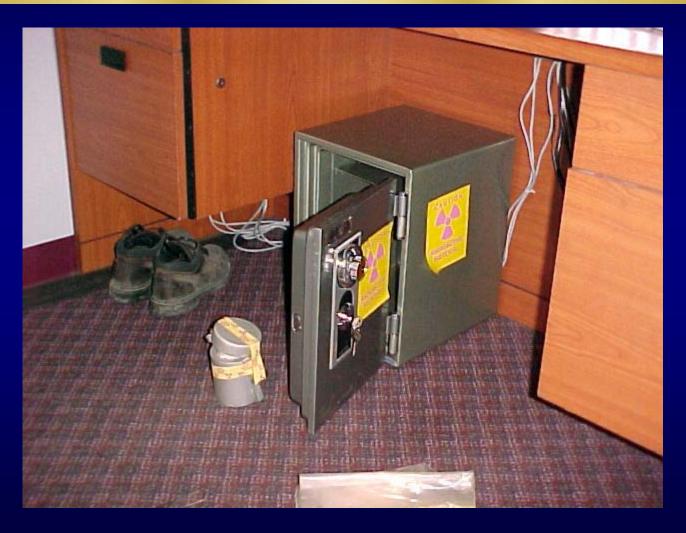
- 1. Security / Prevent Loss of Licensed Materials
- 2. Maintain Shielding of Licensed Materials
- 3. Comprehensive Safety Measures
- 4. Radiation Dosimetry Program
- > 5. Radiation Instrumentation
- 6. Knowledgeable Workers
- > 7. Management Systems & Oversight

'Unsealed' Inspections and FE 1

FE 1 Security/Prevent Loss of Licensed Materials

- access to facility, control of laboratories: facility or labs or both may be limited access (locked or attended and persons trained); other alternatives are possible
- storage and control of materials: secured/attended
- user responsibilities and knowledge: appropriate for types and quantities of RAM
- receipt/transfer/inventory: user records, facility records

Secured - locked and posted gates


Secured – storage cage

Secured – Lock box

Secured – safe (when locked)

Control/Surveillance - Attended

Control/Surveillance - Attended

Control/Surveillance - Unattended?



'Unsealed' Inspections and FE 2

FE 2 Maintaining Shielding of Licensed Materials

- Shielding alpha vs beta vs gamma: mostly betas so typically see plastic shielding; look for shielding appropriate to RAM type
- contamination controls depend on types, forms, quantities, and procedures performed:
 - most potentially airborne CHIPPS (gases, volatile liquids, powders) used on benches or in hood; hot cells or glove boxes used for large quantities
 - absorbent liners, trays, impervious surfaces
 - Good housekeeping habits

Shielding – beta or gamma?

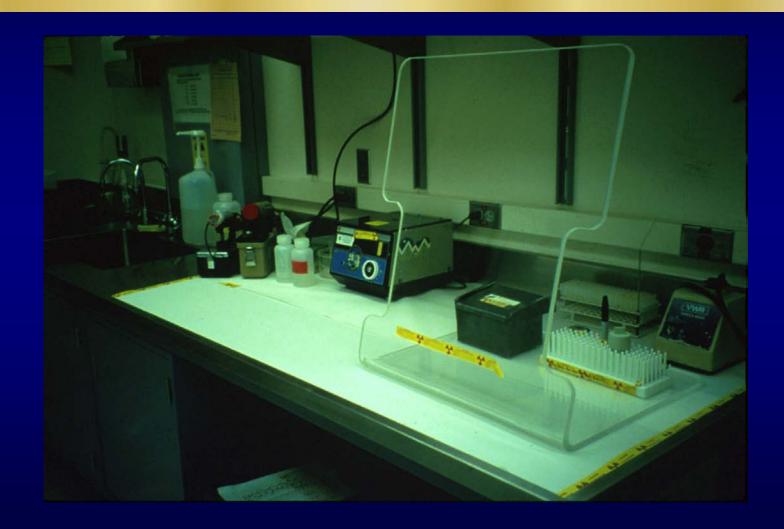
Shielding – beta or gamma?

Contamination Control - hood, bench paper, survey meter

Contamination Controlspill tray under refrigerator

Contamination Control - tacky mat, shoe covers

Contamination Control - parafilm covering on handles



'Unsealed' Inspections and FE 3

FE 3 Comprehensive Safety Measures

- materials used within operational limits: typically not a big concern with unsealed RAM but there may be unusual situations
- other industrial/chemical/biological/etcetera hazards considered: the non-radiation hazards are dictated by the chemical compound which is radiolabelled and the context of the laboratory work – presence of oxidizers, flammables, carcinogens, teratogens, mutagens, bacteria, and the like!

Typical CHIPS bench

Other Hazards

'Unsealed' Inspections and FE 3

FE 3 Comprehensive Safety Measures

- Transportation
 - iaw DOT regulations: most CHIPS users do little shipping and are unfamiliar with DOT regulations
 - public roads versus private roadways: look for transfers of materials between users, especially if they are in different buildings...DOT regulations may or may not apply

Common CHIPS Shipping Box

Most common CHIPS shipment: radwaste drums, ready to go

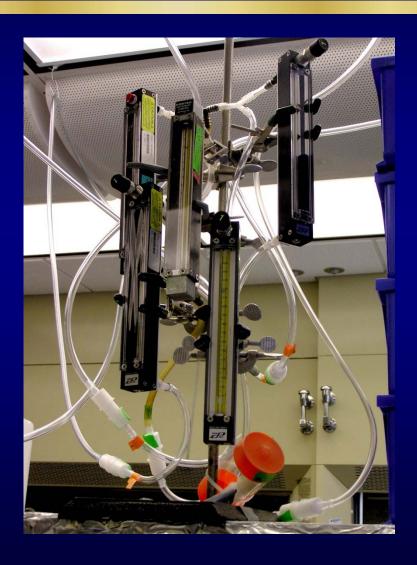
Be alert for un-common issues.

'Unsealed' Inspections and FE 4

FE 4 Radiation Dosimetry Program

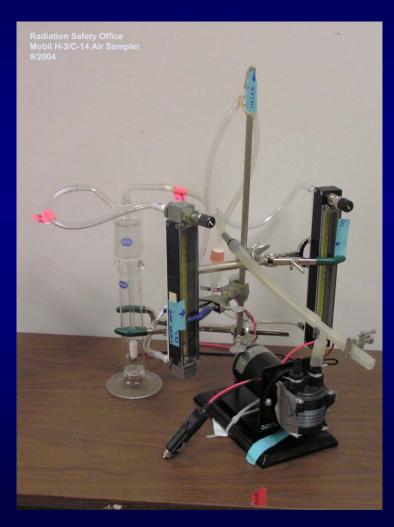
- External exposure:
 - External dosimetry is typically not required by regulation for CHIPS users (may be required by facility policy)
 - If used, look for proper use and storage of dosimeters (whole body, ring, others as needed)

External Dosimeters



- Internal exposure:
 - Internal dose assessment is typically not required for CHIPS users
 - If used, look for appropriate procedures and analysis depending on compound and radionuclide (typically urinalysis for H3, thyroid assay for radioiodines...)
 - beware of "GIGO" poor sample collection won't be improved by complex computer dose models

Thryoid Bioassay System

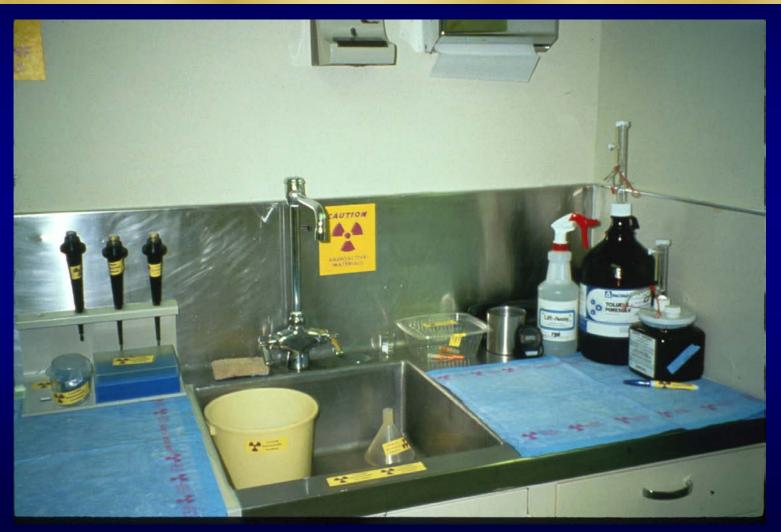


Personnel Monitoring Area Air Sampler

- public dose assessment MUST be done and recorded
 - Dosimetry: location of area monitors, assumptions for total/max public doses; and/or
 - Effluent monitoring: location of samplers, type of sample, collection time/volume/etc; and/or
 - Calculations: EPA Comply code, other; and/or
 - Surveys: appropriate instruments, locations, assumptions

Left: Effluent air sampler for H3, C14 Right: Calibrating a rotameter

- preventive activities
 - radiation/contamination control: surveys
 - who (lab staff or HP staff or both),
 - what type (qualitative or quantitative; contamination or radiation levels),
 - when (after each use, daily, weekly, etc),
 - where (work areas, "cold" and public areas),
 - why (habit, policy, requirement, incident),
 - how (have them demonstrate!!!), and
 - what follow-up is done


- preventive activities
 - sealed source leak tests, inventory: do a "scavenger hunt"; review licensee follow-up to any leaking sources or lost/missing sources
 - process controls: typically found in synthesis labs or manufacturing – review, understand, determine if/how they could fail. Examples: tritium recycling in manufacturing; ¹⁴CO₂ control in synthesis; iodination mini-hood use.

- preventive activities
 - use of protective clothing: routine lab safety (lab coats, gloves, safety glasses etc); occasional special needs (static-free safety shoes, clean-room dressout, lead aprons/gloves, etc)
 - Good housekeeping: absorbent paper, washable trays, disposable pipetter tips etc, regular cleaning, segregated RAM work areas and equipment
 - respiratory protection program: not typical; if used, do appropriate prep for inspection

- preventive activities
 - waste management:
 - decay-ins-storage (DIS) for P32 and others have them demonstrate surveys
 - sewerage disposal must be soluble or biological dispersible
 - Solid waste transfer to burial site watch for compacting, crushing, and other treatments
 - ➤ Less typical effluent releases (evaporation, oxidation, NPDES permitted discharges), incineration, 20.2002 alternates

- preventive activities
 - able to detect/assess radiation and contamination:
 - good survey technique
 - correctly read meter face
 - Appropriate use of "cpm" versus "dpm"
 - able to identify and investigate events: review/discuss surveys/inspections/audits - do they identify events, how do they follow-up?

FE 4 good practice: contamination control

FE 4 good practices

- Do routine survey
- Wear lab coat
- Wear whole body dosimeter
- Wear ring dosimeter
- Use bench paper
- Use beta shielding
- Label 'rad-use' items
- Designated waste container
- Decon materials available

FE 5 Radiation Instrumentation

- Observe/check for sufficient number and types
 - appropriate, available, operable, used (properly)
 - may be for detection and/or measurement
 - may need portable and/or analytical lab instruments
 - other equipment: air samplers, rotometers, liquid samplers, bioassay collection, etcetera
- Test or have demonstrated
 - Do comparative survey measurements
 - Analyze split or comparative samples

FE 5 Radiation Instrumentation

- Laboratory measurement instrumentation
 - sufficiently sensitive: check MDA/LLD
 - calibrated for required geometries
 - QA/QC programs where applicable

Calibration

- Frequency, including maintenance of instruments
- compare measurements
- Calibrated by licensee: check/observe their procedures, facilities, calculations and results

Survey meterssomething old...

...something new...

...some things calibrated...

...and instruments, too

FE 6 Knowledgeable Workers

***** OBSERVE, ASK, VERIFY *****

- General Training
 - ➤ Initial training scope, method(s), testing
 - Refresher frequency, method(s)
- Operating and Emergency Procedures
 - real incidents (typically spills or contamination)
 - ► Ask about hypothetical situations
- Posting and Labeling
 - ▶typical problem: C-RAM versus Rad Area

Observe / Ask Questions

Observe / Ask Questions

Observe / Ask Questions

Perform Independent Surveys

G-108 – Inspection Procedures

FE 7 Management Systems and Oversight

- The licensee is responsible for the radiation protection program; senior management delegates authority to RSO to implement
- Management focus should include: awareness of events; safety and compliance; providing adequate resources; human performance issues; communications with the NRC

***INTERVIEW MANAGEMENT ***

FE 7 Management Systems and Oversight

- May include a Radiation Safety Committee
 - required for Type A broad scope
 - may be part of licensee's safety management Structure without being part of license *** INTERVIEW THE RSC MEMBERS ***
- > RSO
- Annual Program Review and other audits
 - Review/understand licensee's review program; may be internal or external, annual or segmented

Meet with management

G-108 – Inspection Procedures

March 2011 - Slide 62 of 94

Entrance with RSO

- Discuss current scope of program: most R&D/lab programs are getting smaller fewer users, smaller quantities
- Ask about activities happening during the inspection: CHIPS use is typically sporadic, catch what you can
- State your inspection goals and set your inspection schedule: typically 2-4 hours for small facility (10 or fewer labs) to 1-2 days for an active Type A broad scope program

- Observe general conditions and specific activities
- Talk to researchers, techs, and ancillary staff
- Ask for demonstrations
- Perform surveys

- Be alert for radiation-related activities, signs, discussions etc.
- Pay attention to activities of concern or interest
- Follow up on issues; address concerns immediately

- Keep yourself safe
 - ➤ follow licensee's safety requirements: protective eyewear, lab coats, booties, etc
 - use your survey instrument [keep audio on] and wear your dosimetry
 - Be aware of potential hazards other than radiological

- Let the licensee handle the licensee's equipment
 - ➤ licensee staff should be familiar with the equipment and how to use it; you can observe the level of radiation safety knowledge and equipment use
 - you avoid the potential of being contaminated by handling licensee equipment
 - you avoid the potential of damaging licensee equipment

- Observe "flow" of RAM: typically arrives in Receiving; RSO notified, surveys, and delivers to users; users generate product and waste; RSO disposes of RAM waste.
- ▶ Is what you see authorized? Acceptable? What is "Safety" and what is at "Risk"? Follow cues and clues.
- Check security: test doors, locks, real and hypothetical responses; have licensee open refrigerators etc.

- Determine worker familiarity with use of protective clothing, dosimetry, and safety equipment: typically more than adequate at commercial facilities, but not as rigorously observed at universities
- Observe if separate areas are used for food, beverages, smoking, etc (NOT in labs) Ditto above.
- Determine if procedures are practices: typically through demonstration because use is intermittent.

In the Laboratories - Areas of Attention

- Routine surveys area surveys; contamination surveys; personnel protection and monitoring:
 - usually the responsibility of lab staff, after each use/end of day, in work areas, for contamination control
 - Surveys 'of record' may be responsibility of Health Physics staff at quarterly, monthly, or other intervals

In the Laboratories - Areas of Attention

- Special surveys monitoring, sampling and analysis of effluents (air & water) for RAM; internal dose assessment; waste collection/disposals; equipment releases for unrestricted use; facility releases/decommissioning:
 - typically the responsibility of the Health Physics staff at larger facilities, or contracted to HP consultants or other expert staff.

In the Laboratories - Areas of Attention

- Sealed sources: CHIPS users typically have check sources for survey meters or analytical equipment; Ni-63 ECD in gas chromatograph; Co-57 or Fe- 55 in XRF devices; at universities, may also find mossbauer sources, radioactive ores, fission foils, PuBe sources, self-shielded irradiators, calibrators, and old and new sources you've never seen before.
 - observe/ review uses, procedures and practices
 - observe security and controls
 - inventory: do a "scavenger hunt"

In the Laboratories - Areas of Attention

- Documentation in Labs: many CHIPS licensees require that users maintain certain records in their labs (typically receipt records, inventory/use logs, 'daily' survey results, and waste tags or disposal logs).
 - Review method, frequency, units & action levels: larger facilities have required logs/forms for users
 - Confirm if records are "official" or "unofficial": larger facilities have lab staff keep "unofficial" records while HP staff performs surveys of record

In the Laboratories – Inspector Performs Surveys

- Bring the right instrument(s): GM for most labs, LEG for I125/P32, microR for outdoor surveys
- Keep them on: use the audio in labs watch your probe so you don't bump into expensive licensee equipment; turn audio off in public areas.
- Perform surveys correctly
- Watch and listen

In the Laboratories – Inspector Performs Surveys

- Confirmatory measurements: re-survey areas the licensee already did, and compare results; also often done after a licensee decommissioning final status survey; may include radiation level surveys, contamination surveys, analysis of water, soils or other.
- Non-radiological measurements: in CHIPS labs, may check such items as hood face flow rates, air sampler flow rate, sample volumes, etcetera that may impact radiological calculations

Areas of Concern - Volatile or Airborne RAM

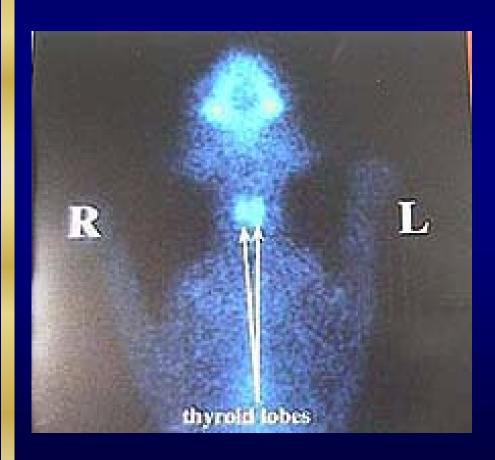
- ▶ Use of unbound I-125 or I-131: can volatilize to iodine gas at low pH/warm T and lead to uptakes; however, very few CHIPS users perform iodinations anymore.
- Bioassays: GIGO
- Fume hoods or other containments: if cluttered, do not function properly to contain airbornes
- Effluent Surveys: can be difficult to do properly

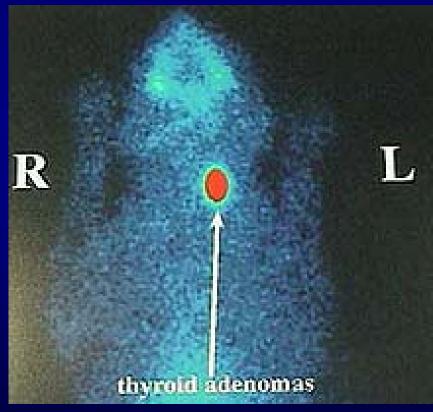
Areas of Concern - High Energy Beta Emitters

- P-32 1.71 MeV_{max} (most common)
- Rb-86 1.78 MeV_{max}
- Sr/Y-90 2.27 MeV_{max}
- Exposure from one ml "drop" of P-32 on 1 cm² of skin will exceed the skin dose limit (50 Rem shallow dose-equivalent) in 85 seconds

Source: NEN package insert

Areas of Concern - High Energy Beta Emitters

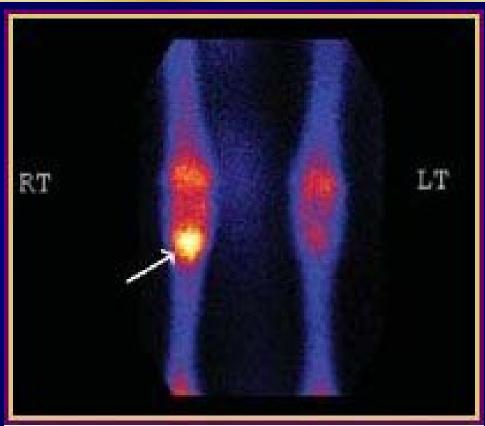

- Special Handling Procedures: look for low density (low "Z") shielding, surveys with pancake or LEG
- Use of millicurie quantities no longer common, but if millicurie quantities are used, good practices include use of:
 - DOUBLE gloves
 - Extremity monitoring > 1.0 mCi
 - Eye protection > 10 mCi


- Research Animals: CHIPS users typically use mice, rats, or rabbits; atypically fish, roaches, poultry, etc. Medical research may use dogs, pigs, and primates. Most animals are sacrificed at the end of the study.
 - Cages: security, decontamination
 - RAM pathways: excreta, including breath (14CO₂)
 - precautions during handling: wiggling animals + "sharps": not a good combination!
 - AND TRAINING!!

- Veterinary Use: Currently treat horses, cats, and occasionally dogs; these animals are returned to the owners after treatment.
- Animal release criteria = public dose criteria of100 mrem in 1 year AND 2 mrem in 1 hour: Review how they ensure dose limits are met.
- Release instructions to owners: Review the instructions, determine how they ensure owners will follow the instructions.

- I-131 in cats for treatment of hyperthyroidism
 - fairly common, increasing
 - unit doses ~ 3-5 mCi per cat
- Review cat care and handling procedures
- Observe (demonstrated) release surveys
- Observe/review survey procedures and results any spills etc that might require bioassay

Normal (left) and abnormal (right) feline thyroids



- Tc-99m in horses for bone scans (and some other)
 - unit doses ~ 100-250 mCi per horse
- Observe radiation area controls in stall/stable area.
- Observe contamination controls (includes horse)
- Observe handling procedures during injection, during horse care activities, and during scan
- Look for dosimetry (whole body and ring), protective clothing, preparation for incidents
- Observe release surveys/owner instructions

Equine bone scan

Study of an avulsion fracture at the origin of the suspensory ligament. Note the yellow/white area represents the "hot spot" (problem area)

Areas of Concern - Waste Management

- Decay-in-Storage (DIS)
 - T1/2 < 120 days only
 - remove/obliterate labels
 - NRC: no minimum hold time
 - good procedures for survey prior to release
 - appropriate survey meter used
 - not distinguishable from background
 - waste segregation

Areas of Concern - Waste Management

- [Public] Sanitary Sewer Disposal
 - soluble or readily dispersible (IN 94-07 defines solubility)
 - Quantities and concentrations[10 CFR 20.2003(a)(4) and Appendix B]

- 20.2005 specific wastes "de-regulated"
 - \triangleright ≤ 0.05 µCi H-3 or C-14/gram LSC fluid
 - ≥ 0.05 µCi H-3 or C-14/gram of animal tissue.

Areas of Concern - Waste Management

- Compactors and crushers
- Incinerators and Ash (P&GD 8-10, 7 January 1997)
- Long-term storage
- Mixed Wastes

Review Records

- representative samples
- cross-check records
 - "vertical" (across record types): find an item received, look for the use record and disposal record
 - "horizontal" (within record type): review all receipt records to understand what they typically are using, and looking for unusual orders
- verify information observed in laboratories: Example
 write down names of individuals in labs then crosscheck their training, ordering and dosimetry records

Review Records

- RSC minutes: usually provide a good summary of current activities and issues
- Incidents and events: ask for these not-required records; they can be very informative; in some CHIPS facilities, ANY contamination is an event.
- Worker dose, public dose
- Annual Program Review: NOT an audit but can include audits...most CHIPS users do these.

Performing an Effective Exit

- PREPARE for the exit
 - take time to organize your presentation: this is especially important for multi-day inspections with a wide range of activities
 - be sure of your findings: know your basis, have your data, review understanding with licensee staff
 - use notes: stay organized, use a logical order

Performing an Effective Exit

Pre-brief the RSO (and staff):

- ensures the RSO is aware of all your findings
- allows the HP staff to ask questions/clarify issues (and the HP staff does not usually attend the exit)
- allows discussion of major and minor issues in technical detail, including issues that will not be discussed at the exit
- acts as a dress-rehearsal for the inspector

Performing an Effective Exit

- Exit with the highest possible level of management:

 Be aware that at large commercial firms and universities, managers may not be scientists, so tailor your discussions to minimize unnecessary technical detail.
- Explain the inspection process and any follow-up
- Discuss what you found
 - opportunity to highlight positive findings
 - give perspective to negative finding
 - Be open; accept comments; answer questions

Questions???

THE END